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This proposal details an interface hierarchy for objects whose major function is the mapping of a 
finite dimensional vector space of dimension m to another vector space of dimension n. Th& 
includes many important objects in a solver library, including matrices, their transposes and 
inverses. solvers. preconditioners, iterative methods, and nonlinear maps. A unifying framework 
for finite dimensional operators and solvers is proposed which utilizes the composttton operation 
from the operator algebra to achieve great functionality while reducing the size of the interface and 
complexity of the class structure. A second composition operation is &troduced to handle the 
composition of approximate solution techniques, and related to several common preconditioning 
techniques. 

Solvers as Operators 

The goal of the model presented here is to derive a common abstraction from these objects, 
incorporating the matheamtical structure of these maps into a single interface, so that clients of 
these objects can use them in a uniform manner, and to introduce operations on these objects that 
define an algebra that provides for a powerful mechanism for generating new operators from old 
operators in a flexible and extensible way. Some benefits of general algebraic constructions have 
already been identified, but perhaps more importantly, this rich structure leaves room for 
combinations that may be developed by future research, thus greatly increasing the chances that the 
ES1 standard will be sufficient for expressing future generations of algorithms. Standard efforts 
frequently suffer from rapid obsolescence, and a standard that can grow with time is highly 
desirable. 
At the same time, it is essential that making legacy code ES1 compliant not impose an undue 
burden on the original programmer. To this end, we show how solvers written in several styles can 
be made compliant with this proposal in a straightforward way. In some cases there are several 
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options for achieving compliance, which is consistent with the ES1 strategy of putting the burden of 
choice on developers writing to the ES1 standard rather than on the crafters of the standard. 
The most controversial aspect of this proposal is that it does not include a specific preconditioner 
class. It is our stance that preconditioning is a role played by specific operators in certain 
circumstances, rather than a separate type of object meriting its own class. As a simple analogy, 
consider a banking system which includes a multipurpose Customer class. When implementing a 
Transaction interface, it is desirable to have an associated transaction-customer member. The 
implementers may choose to make transaction-customer a Customer, or to develop a more specific 
Transactioncustomer class. If the first choice is made, no new class is needed, and objects of type 
Customer can be transparently exchanged between Transactions and other parts of the system. On 
the other hand, if requiring a transaction-customer to be of type Customer introduces significantly 
new requirements for the Customer class, then the second solution may make more sense, 
particularly if TransactionCustomer is a subclass of Customer. For preconditioners we have a 
similar choice, and we argue that there is an enormous utility in retaining the generality of the 
Operator interface for both solvers and preconditioners. 
The competing proposal makes the argument that preconditioning can take several forms requiring 
different things from the preconditioner, and thus a utility class is a better solution. However, we 
argue in this proposal that the extra functionality required of special preconditioners, which include 
split preconditioners and ej,Eciency-trick preconditioners like Eisenstat’s SSOR, may be derived in 
a straightforward way from the underlying mathematical structure of the space of operators 
embodied in our interface. Thus, while we believe that both proposals address the extant scenarios 
that ES1 has put forth, our proposal does so in a way that is more flexible in that it does not hard 
code the preconditioning relationship into a class. Our model also allows ESI-compliant classes to 
be easily combined in unanticipated ways without changing the interface. Consider a user who 
would like to precondition a solver with a matrix that directly approximates the inverse of the 
system operator. In our model, this matrix could be used directly as a preconditioner without 
constructing a wrapper. In the previous model, only an object of type Preconditioner can be used as 
a preconditioner to a solver, so the user must write or borrow code that can encapsulate their matrix 
as a Preconditioner. We view easy plu g-and-play behavior at the user level as extremely 
important, and requiring even straightforward wrapper code a significant hurdle, enough to 
discourage some users from experimenting with novel solution strategies. Also, writing 
ESI-compliant code may be subtly harder than one would expect. For instance, it is not clear which 
language the user should choose for this wrapper. While the same question is valid for developers 
of ES1 compliant components, we prefer to put the burden of implementation on knowledgable 
developers, where the cost is amortized over all users of a particular component, rather than on 
users, where the cost is multiplied by the number of users. 
Similarly, this proposal includes in the interface an algebra for approximate solution techniques. 
This algebra is based upon subspace or residual correction, a general concept important in the 
theory of iterative methods. Again, while the functionality of this approach can be coded directly by 
developers, by defining the algebra, the model allows users to experiment with various 
combinations of iterative methods using any appropriate ESI-compliant objects, without writing 
new wrapper classes or auxilliary logic. The necessary operations are written once by developers 
and that cost is amortized over all user uses. 
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2. Interface Hierarchy 

n Operators 

The motivation for establishing the Operator interface is to abstract out the common features of 
arbitrary nonlinear finite dimensional maps, which may correspond to both exact and approximate 
representations of infinite dimensional maps in some Banach space, as well as arbitrary finite 
dimensional transformations. Thus the Operator interface must contain an apply function which 
takes as input an ESI-Vector and returns the action of that operator as output in another 
ESI-Vector. The necessity of supporting Fortran may prohibit aliasing of the input vector to the 
output vector. The Operator interface will also contain a setup method so that any auxiliary data 
structures or calculation may be handled prior to application, and a getDimensions method 
returning the sizes of the domain and range spaces. 
The application of the transpose and hermitian conjugate are realized by constructing a new 
operator from an existing one, whose apply function implements that operation. The 
OperatorTranspose interface, for instance, would be implemented by those operators able to 
construct such a transpose. Reference counting techniques should allow data structures to be 
efficiently shared between the instantiations. This is also the philosophy we will use in order to 
derive the Solver interfaces, and to deal with preconditioner abstractions. Finally, an algebra (and 
in special cases group structure) can be derived for the Operator interface so that new Operator 
objects can be constructed through algebraic operations such as composition (or inversion in a 
group). The aspects of this composition property will be discussed further in sections 4 and 5. 
This encapsulation of various actions of the operator in separate objects is an instance of the 
Strategy pattern[2]. Abstractly, this pattern defines a family of algorithms, each one of which is 
encapsulated in a separate object, which all implement a uniform interface. In this way the 
algorithm can vary independently of the client code which manipulates it. The Operator interface 
functions as the Compositor in the pattern with the uniform interface apply corrseponding to 
Compose. This also allows the tranpose or conjugate to be passed independently to other 
algorithms without modification. 

: _ . CM.; )’ f <:I .<’ i,> ,,; - ,.;,i. ,>’ i.‘ x i. <:. !r. ” ‘: ,f.; ,‘:‘ .’ { 
..ir! setup ( ) ; 
3‘ getDimensions (out .I:?:.. m, out i:?c n) ; 

j:.I;. apply(in .' ;: :.;;i x, out ::,. ';,:I., >r‘ y) ; 

ILL*. COmpOSeLeft  (in ,: :':: :: I .,.: G, out -': .:,.*,: __ " GF) ; 
i--- composeRight(in ,:I.:,::,: .Y II ..^, G, out -:^_ :‘;,' 'I::' : FG) ; 

1 



4 ESI-Operator.nb 

The Operatorsplittable interface allows for easily decomposable operators, such as Cholesky 
factorizations, to export this functionality. Again, we encapsulate the new action in an object, so 
that we can leverage our entire algebraic apparatus with that object as well. Notice that the 
composeSplit function allows for sophisticated optimization, such as the introduction of Eisenstat’s 
Trick, since the entire state of the operator is available to the implementor. 

I Matrices 

The Matrix interface encapsulates the behavior of a linear operator. Thus it does not impact the 
apply function, but the assumption of linearity will be useful when using the algebraic operations 
on operators. Also, information about the eigenstructure could be included in this interface. The 
interfaces for deriving transposes and conjugates might also be replicated. 

I Solvers 

The Solver interface is meant to abstract the action of the inverse of some operator, whether exact 
or approximate. The getoperator and setoperator functions provide access to the designated 
operator, and the apply function now gives gives the action of the inverse. 
Any Solver may also be provided a preconditioner in order to facilitate calculation in the apply 
function. The preconditioner is an Operator which may be applied in the course of the 
computation. It could be argued that the preconditioner M  should be a Matrix, which would 
include the case of nested preconditioning using linear solvers, but not nonlinear ones. Notice that 
we do not require a separate interface for preconditioners since the traditional logic may be 
expressed in terms of the algebra of operators. Examples of traditional preconditioning approaches 
will be shown in section 3 to demonstrate the efficacy of this design. 

. :~~~~(-~--<~‘,~ ..;:; :;, ‘,,,Z‘ <D-K 7 ;?::,‘:: :- : :., ,,:’ ~, -’ { 
irk: getOperator(out .::;I “‘r‘ ,; F) ; 
irk:. setoperator (in : .' :,;;,\v': F); 

I'::.. getPreconditioner(out : ,: , I 1' " G); 
l:i-. setPreconditioner(in 1.. <::. _" G); 

i -1: getRes idual (out -:: ‘<,. :-, r) ; 
LLL'. setResidual(in '2'. '.:<x," <ii r) ; 

.i:l;: resComposeLeft(in is ' ':,.> , j T, out : ,“Y j ::x ' TS) ; 
i-i: resComposeRight(in . . . '::, :"z:‘ T, out .i 5~': "' ST) ; 

> 
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A straightforward extension of the discussion for the Operator interface argues that linear solvers 
should extend the Matrix interface since that inverse would be part of the same group GL(N). 

The SolverIterative interface makes explicit the assumption that the action of inverse is 
approximate and that the approximation is controlled by a ConvergenceTest object. We have 
replaced the usual scalar tolerance and maximum number of iterations with an interface to allow 
more general, user-specified stopping criteria. 

: -; I : I” i- <:: :“” ,,; : ̂ ^ i c. , : : :: < <:, .’ i, ‘I’ c ,-; 2:; “, .‘ : ^ .: ; 
i ‘1:. getN&Iterations(out I:::. numIter;tions); 

1: 
i:!: setNumIterations(in I:‘-: numIterations); 

i-1: getConvergenceTest(out :. ::‘. _' :. ',:.c 1' -\ test); 
irr:. setConvergenceTest (in .',:‘ : _% ‘:,i‘ _I\" ye ,:_ test); 

1 

3. Example Implementations 

I Gaussian Elimination 

Direct solvers are much more straightforward from the perspective of solver design, and thus we 
will use Gaussian elimination to illustrate the design goals of our approach. Two concrete solvers 
are introduced, GaussianEliminator and SolverTriangular, both of which are direct solvers 
derived from ESI-SolverLinear. Only the implementation of GaussianEliminator is shown as 
SolverTriangular is straightforward. GaussianEliminator also inherits from 
ESI-Operatorsplittable in order to demonstrate the functionality of that interface. The complete 
implementation of this example may be found in the ES1 Forum[l]. 
The setup function constructs the decomposition of A and stores L and U as ESI-Matrix objects. In 
addition, it creates two SolverTriangular objects which are passed L and U which encapsulate the 
backward and forward solves. Then in apply, we merely execute the apply functions of these 
triangular solvers. In this way we avoid a messy solve function in the ESI-Operator interface, and 
also enable composition using the inverses. 
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I:::. GaussianEliminator-apply(, '. :..' :' x, '1 .: :: Y) { 
,,, : ; i : 1" z ; 

ESI-Vector-clone(x, &z); 
SolverTriangular-apply(lnvL, x, z); 
SolverTriangular-apply(invU, z, y); 
ESI-Vector-destroy(z); 

0; 
I 

The operator composition functions for this example are detailed in section. Those for split 
composition, however, are overridden by the solver, and are shown below. 

1::': GaussianEliminator-split ( ,,‘ : :,.,.. Y.:: r *L, I :-, ';, : ,:* ,,I *R) 
I 
L 

*L = invU; 
*R = inuL; 

0; 
I 

.f.::*: GaussianEliminator-composeSplit (i ;:: : :,-: ,-:I c A, z‘:., <>!->C '.:. IF 
*LAR) 
I 

ESI-Operator-create(LAR); 
(*LAR)->composeList ESI_Operator[3]; 
(*LAR)->composeList[O] 1 invL; 
(*LAR)-)composeList[l] = A; 
(*LAR)-zcomposeList[2] = invU; 

0; 
I 
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n Incorporating legacy solvers 

We would like to enable the user to wrap a legacy solver code so that it conforms to the ESI 
interface specification without impacting the functionality of the solver, and perhaps extending it. 
The next sections present three scenarios focusing on legacy Krylov solvers which involve different 
preconditioner interfaces. We demonstrate that each one can be incorporated into the ES1 
framework by embedding some logic into the wrapper code. This approach could be generalized by 
deriving a subinterface of Solver corresponding to each scenario. 

= Solvers with explicit preconditioners 

A solver which accepts a preconditioner may just utilize the getpreconditioner function in the 
Solver interface to retrieve the operator, which may then be applied using the apply function. For a 
legacy solver, this logic would reside in the wrapper code. As an example, we wrap a Petsc SLES 
object[4]. 

.: ),~ -_-.. setup (1 
{ ,.‘l. I_ ‘L.’ .” A; /. ‘(,_, .> : :’ . ,:‘ M; 

getMatrix( 
getPreconditioner(&M); 

SLESSetOperators(sles, A, M, DIFFERENT-NONZERO-PATTERN); 
0; 

1 

SLESSolve(sles, x, y, &its); 
0; 

1 

n Solvers with explicit split preconditioners 

A solver which expects a split preconditioner may again retrieve the operator using 
getpreconditioner, and then perform an interface query to check that it implements 
OperatorSplittable, which will be explained in detail in section 4. The factorization may then be 
retrieved using split, which again would reside in the wrapper code for legacy solvers. Thus we 
might have an implementation such as 
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k r setup ( ) 
{ ‘,, , .,,. * ,_,_ 

,j _' ,. ,, I; 
'_,*' " *, A; .' :: .' , , _>, r ,\ ::. ,T‘ M, L, R; 

getMatrix( 
getPreconditioner(&M); 
M.queryInterface(",‘"; _* ,,y;:,:: ,-:* :o_o I:‘< 'I, &I) 

(I == YL) 
M.split(&L,'&R); 

SLESSetOperators(sles, A, L, R, DIFFERENT-NONZERO-PATTERN); 
0; 

n Solvers without explicit preconditioners 

A legacy solver which only requires the application of the system matrix may be wrapped in a 
straightforward manner using the setup and solve interface functions. In order to accomodate 
preconditioning, a new operator is derived by composition which is then passed to solve, and 
additional logic manages the input and output vectors. 

?- 
setup0 

-: *..'- I; ,/ ., A, B; I .; :,y I _,Y M; 

getMatrix( 
getPreconditioner(&M); 
M.queryInterface("-.' I:::. : :,,A',' " *:' 'I, &I) 

(I == NULL) { 
M.composeLeft(A, &B); 

1 { 
M.composeSplit(A, &B); 

1 

SLESSetOperator(sles, B, DIFFERENT-NONZERO-PATTERN); 
0: 

1 

I-Q-- apply(..., <.: : i X, '__ I‘ y) ^,_ 
I 8 .c 

-.- _jj,_ 
: '. M, L, R; 

,I_ \ _' r, s, t; 
.i I-j ;, its; 

getPreconditioner(&M); 
M.queryInterface("~~::: I :::: y,_ I.: :,7x.' -.:‘c 'I, &I) 

(I != NULL) { 
M.split(M, &L, &R); 

1 
,I ” ;;ei :.ip tile Skii 

A.aP??ly(y, r) ; 
r.aypx(-1.0, x) 

(L != NULL) { 
L.amly(r, s) ; 

1 I 
M.wply(r, s) ; 

1 
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The algebraic operations on Operators take as input another Operator and produce a third which 
encapsulates the action of both. This designs mirrors the algebraic structure of finite-dimensional 
operators, and is also an instance of the Composite design pattern. This allows user code to treat 
individual operators and composed oeprators uniformly. The Composite pattern must have an 
abstract class the represents both the primitives and containers, which is naturally Operator since 
algebraically compositions are again operators. This greatly simplifies client code, which would 
normally have to write tag-and-case-statement-style functions to deal with composition. 

Lx>L ESI_Operator_apply('.'-~, ":,Y:' ~;-* x, ,'~.: i,"s:.'- : y) 
{ 

: '_ l,.l" __ : 2; 

(composeList != NULL) { 
ESI-Vector-clone(x, &z); 
ESI-Operator-apply(composeList[O], x, z); 
ESI-Operator-apply(composeList[l], z, y); 
ESI-Vector-destroy(z); 

f i“. ESI-Operator-composeLeft(=Y :,;,: .:: 'j' op, : '_! : ,.,:, ^_,_, *newOp) 
I 

ESI-Operator-create(newOp); 
(*newOp)->composeList ~ ,- ,‘,‘T,,,, < 
(*newOp)->composeList[O] 1 :' " " 

t21; 

(*newOp)->composeList[l] = op; ' 
0; 

'*:: ESI-Operator-composeRight(: *: ,,') '18 : op, ' :. '> ,,i ,;e,<.“ \,,,x ^ *newOp) 
{ 

ESI-Operator-create(newOp); 
(*newOp)->composeList 
(*newOp)->composeList[O] z op; 

b('. (). ,:;: 'XL [2] ; 

(*newOph->composeList[l] = ; 
; 

I 
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n Splittable Operators 

The interface Operatorsplittable allows the operator to be factored into F = LR, and further allows 
the creation of a new operator LFR from any given operator F. Not only does this interface enable 
black-box split preconditioning, but also optimizations such as Eisenstat’s trick. 

5. Solver Composition 

I A  Motivating Example 

We begin with the most elementary type of solver composition, iterative refinement. The idea is 
that the solver has not done the best job on the first try and we will need to correct the solution it 
has produced. The system is given by 

Ax*=b, 
where x” is the true solution, and define the residual r as 

(1) 

r=b-Axl. 
The approximate solution x1 is given by 

(2) 

x1 = A-lb, (3) 

where we use a hat to indicate an inexact numerical process. Now the idea is to use the residual to 
define a correction to our approximate solution 

Ax1 = Am1 r . 
We can see that this makes sense by looking at the result of an exact solve in equation (4), 

(4) 

A-’ r = A-’ (b-Ax) = x* -x1, (5) 

so that 

Xl + Ax = x* . (6) 

And, in fact, if the rigorous error analaysis is carried out, it can be shown that the solution actually 
improves even using an inexact solve. This idea may be extended by allowing the matrix to vary at 
each step, so that we have 

nxk = AM1 rk . (7) 

where a is another approximation to A. This leads directly to a method for composing multiple 
solvers (or the same solver with itself) by acting successively on the residual of each previous 
computation. 
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Thus we should include in the Solver interface a getResidual function which returns the current 
residual vector. We then include resComposeLeft and resComposeRight functions for solver 
composition, which operate in an identical fashion to composeLeft and composeRight from the 
Operator interface. Every solver will now be required to store the currect residual of the 
calculation, but this does not seem to be an undue burden as this is the most common element of 
stopping criteria. An example implemention of this idea is given below: 

:.:i? ESI-Solver-resComposeRight(',? ';:>*:.$,- S, : ': :. _' .; T, 1:“' ::,!t. ,!:. 
"ST) 
{ 

ESI-Solver-create(ST); 
(*ST)->resComposeList = (ESI-Solver *) 

ESIMalloc(2* ( ,',~ ,:*, i \'i y)); 
(*ST)->resComposeL+st[O] = S; 
(*ST)-);esComposeL1st[l] = T; 

; 
1 

i:)i ESI-Solver-apply(: ',. .:8;i:;-.: S, >..‘: ::-,,‘:.:' x, '1 :.' : Y) 
I 

.- r, 2; 

(S->resComposeList != NULL) { 
ESI-Vector-clone(x, &z); 
ESI-Solver-apply(S->resComposeList[O] 
ESI_Solver_getResidual(S->resComposeLbs~~O~),~&r); 
ESI-Solver-apply(S->resComposeList[l], r, z); 
ESI-Vector-axpy(y, 1.0, z); 
ESI-Vector-destroy(z); 

1 

I General Solver Composition 

In general, we may put most instances of solver composition in the framework of nonstationary 
linear iterative methods, for which 

xk+’ =Xk+i&(f-Axk)=xk+&rk (8) 
where f is the rhs vector, A  is the system matrix, xk is the current approximation to the solution, 
and M  is an arbitrary matrix which may depend on the iteration index. Thus we may mimic any 
solver-preconditioner combination in this family. A  popular representative would be the two level 
multiplicative Schwarz algorithm[5], which may be expressed as 

1 Algorithm 5.1: Two Level Multiplicative Schwarz 

1. xtRT A$ Rf 

2. For i = 1 e..p 

3. xtX+Bi (f-AFX) 
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where f is the rhs vector, AF is the system matrix, AC its coarse representation on the space defined 
by the projector R, and the Bi are preconditioners on each domain. All of the variations on this 
theme given in Smith et. a1.[5] may be incorporated using only composition and the addition 
operation. This may also be extended to full multigrid methods[3], which calculate a series of 
corrections based on coarser representations of the system operator. 
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